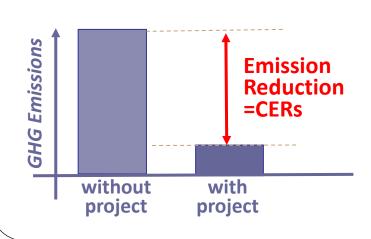

Renewable Energy CDM Projects (Review Session)

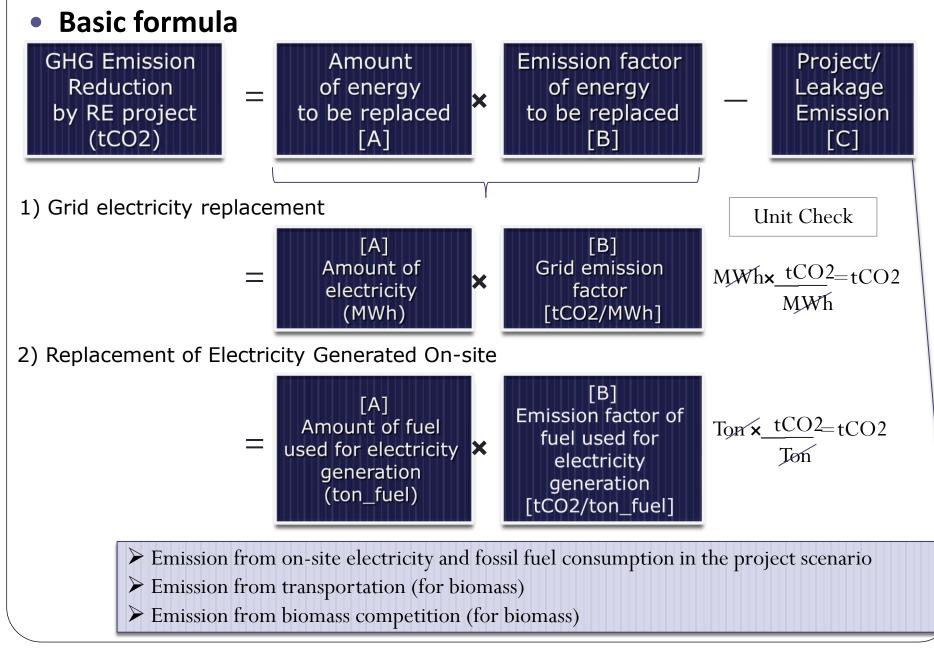
8th July 2011 JICA Expert Team Ai Kawamura

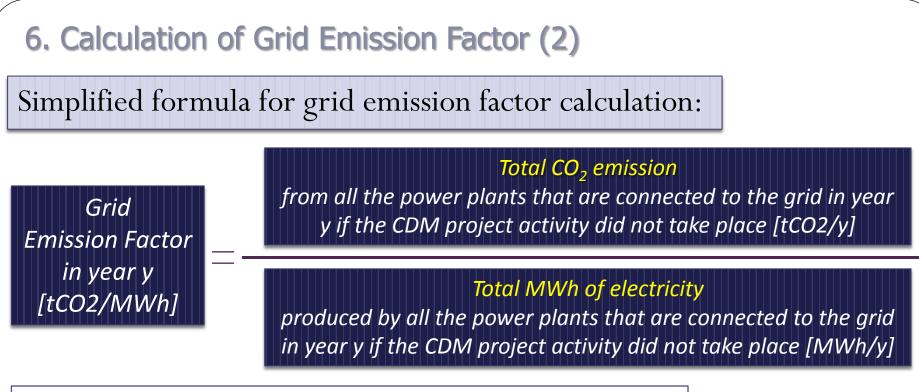
Summary of the Lecture of Renewable Energy

RE reduces GHG emissions by reducing the use of fossil fuel.


2. Energy Source of Renewable Energy

- Non-biomass:
 - Wind
 - Hydro
 - Solar
 - Others (geothermal & wave etc)
- Biomass:
 - Residue biomass (wood residue, rice husk, bagasse & garbage etc)
 - Energy crops (gliricidia, jatropha etc)





5. Basic Formula for Emission Reduction Calculation of RE project (1)

Reference: "Tool to calculate the emission factor for an electricity system"

- Grid Emission Factor is necessary for:
 - Renewable energy project that displaces grid electricity
 - Energy efficiency projects that reduces the use of the grid electricity
 - Projects using grid electricity in the project scenario (project emissions)
- Currently, all the registered Sri Lankan CDM projects requires grid emission factor data.
- Grid Emission Factor: 0.65~0.73 tCO2/MWh (National official figure is under preparation, Currently, PP has to calculate by themselves)

6. Calculation of Grid Emission Factor (3) Essential Terminologies

Terminology	Expla	nation	
Operating Margin (OM)	Emission factor that refers to the group of existing power plants whose current electricity generation would be affected by the proposed CDM project activity.		
Built Margin (BM)	Emission factor of the group of prospective power plants whose construction and future operation would be affected by the proposed CDM project activity.		
Combined Margin (CM)	Weighted average of OM & BM of the el	ectricity system.	
Low-cost/must-runPower plants with low marginal generation costs or power plants that are dispatched independently of the daily or seasonal load of the grid.			
OM Electricity sup CDM project	Electricity included in OM calculation	BM The set of power capacity additions in the electricity system that comprise 20% of the system generation (MWh) and that have	
Other sou (diesel, natural		been built most recently	
Low cost/must (renewable, nuc	run – from OM calculation	The set of 5 power units that have been built most recently	
6 12	18 24 hour by CDM project)	7	

6. Calculation of Grid Emission Factor (3) Essential Terminologies							
M	W		sources ral gas, coal)			based on the em d for power gene	
		ow cost/must enewable, nuc 12	elear)	Considere CDM calc	· · · · · · · · · · · · · · · · · · ·	emission in	
	nission factor of each fuel	Fuel Type	Net Calorific Value (TJ/t) [a]	CO2 Emission Factor(tCO2/TJ) [b]	Oxidation factor [c]	CO2 emission factor(tCO2/t) [a]*[b]*[c]	
		Furnace Oil	0.041	77.4	1.0	3.173	
		Gas/Diesel Oil	0.0433	74.1	1.0	3.209	
		Naphtha	0.0456	73.3	1.0	3.342	
		Residual Oil	0.041	77.4	1.0	3.173	
		Source	Energy Data 2007, SEA	2006 IPCC Guideline GHG Inventories, vol			
Grid Electricity factor for CDM project Grid Emission Factor: 0.65~0.73 tCO2/MWh (National official figure is under preparation, Currently, PP has to calculate by themselves) Grid emission factor for existing electricity consumers is not the same							

Calculation Exercise

Non-biomass, Biomass

1. Calculation Exercise: Biomass(1)

- Company B has a CDM project plan with the following details:
 - Biomass power generation project selling the electricity to CEB
 - The biomass to be used is saw dust and rice husk
 - Net electricity generation operation rate: <u>1.0 MW</u>
 - Daily operating hours: <u>20 hours</u>
 - Monthly operating days: <u>25 days</u>
 - Seasonal operation: operation is constant
 - Grid emission factor: 0.70 kgCO2/kWh
 - Furnace oil required for operation of the new plant: <u>5ton/month</u>
 - Diesel required for transportation of biomass: <u>10 ton/month</u>
 - Emission factor of fossil fuel is shown as below:

Fuel Type	CO2 emission coefficient (tCO2/t)
Furnace Oil	3.173
Diesel Oil	3.209

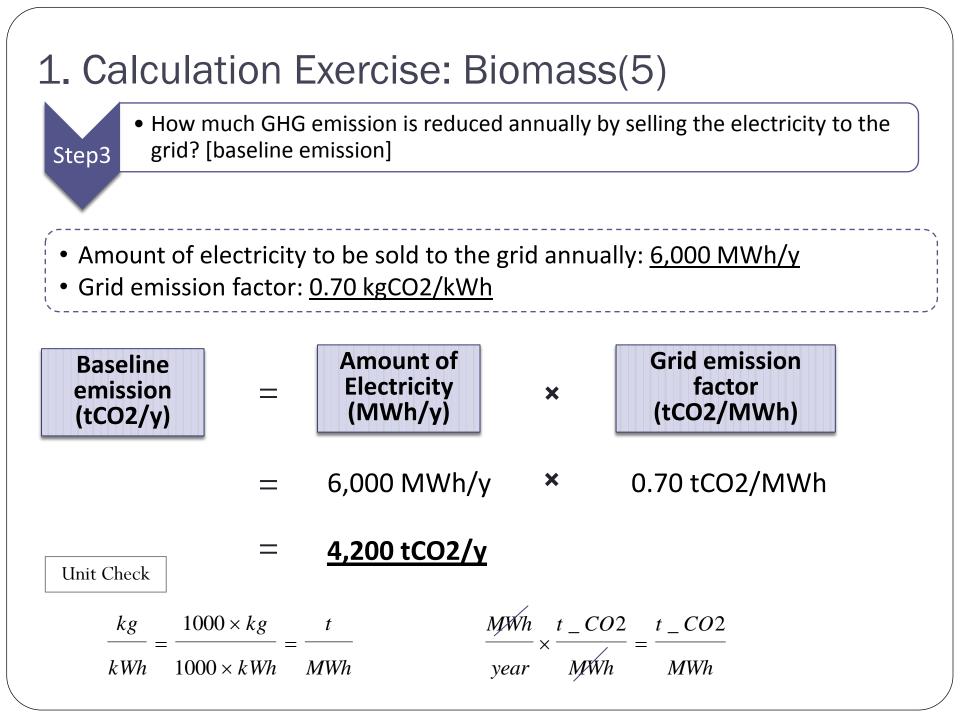
(Question)

How much emission reduction is expected by this project activity?

1. Ca	alculation Exercise: Biomass(2)
Step1	How many hours does the plant operate annually?
Step2	• How much electricity to be sold to the grid annually?
Step3	• How much GHG emission is reduced annually by selling the electricity to the grid? [baseline emission]
Step4	 How much fossil fuel is required for operating the plant annually? How much fossil fuel is required for biomass transportation annually? How much fossil fuel is required by the project activity ?
Step5	 How much GHG is emitted annually through fossil fuel consumption by the project activity? [project emission]
Step6	 How much GHG emission is reduced annually by the project activity? [Emission reduction]

1. Calculation Exercise: Biomass(3)
• How many hours does the plant operate annually?
 Daily operating hours: <u>20 hours</u> Monthly operating days: <u>25 days</u> Seasonal operation: operation is constant
Annual operation hours $20\frac{hours}{day} \times 25\frac{days}{month} \times 12\frac{month}{year} = 6,000\frac{hour}{year}$
Unit Check $\frac{hours}{day} \times \frac{days}{month} \times \frac{month}{year} = \frac{hour}{year}$

1. Calculation Exercise: Biomass(4)	
• How much electricity to be sold to the grid annually?	
Annual exerction hours (000 hours /u	- `,`
 Annual operation hour: <u>6,000 hours/y</u> Electricity generation operation rate: 1.0 MW 	


Amount of electricity to be sold to the grid

6,000 hours/year × 1.0MW = <u>6,000 MWh/y</u>

MWh

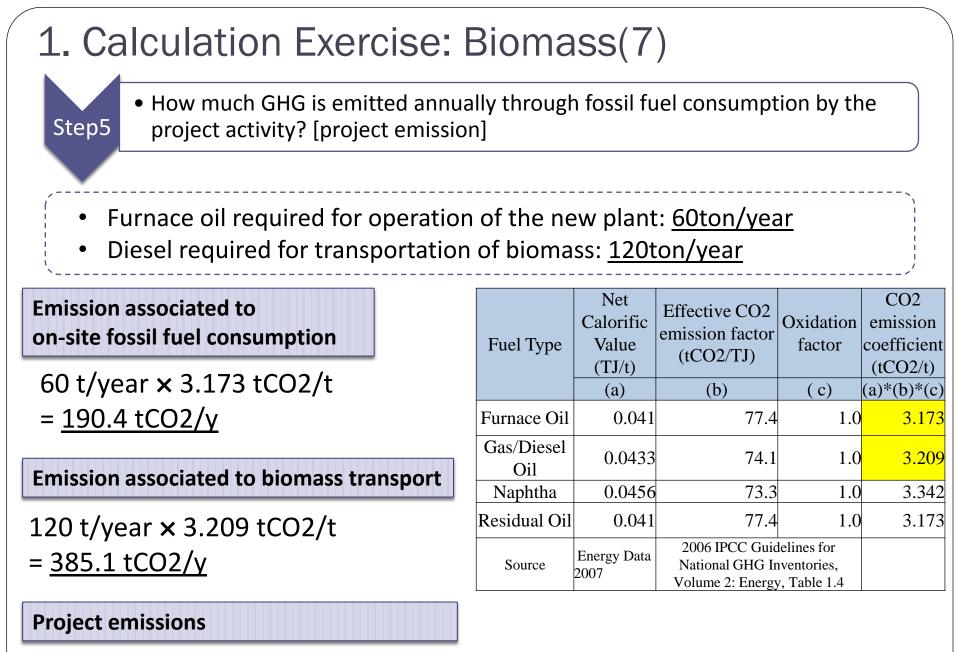
year

Unit Check	
	$\frac{hour}{year} \times MW =$

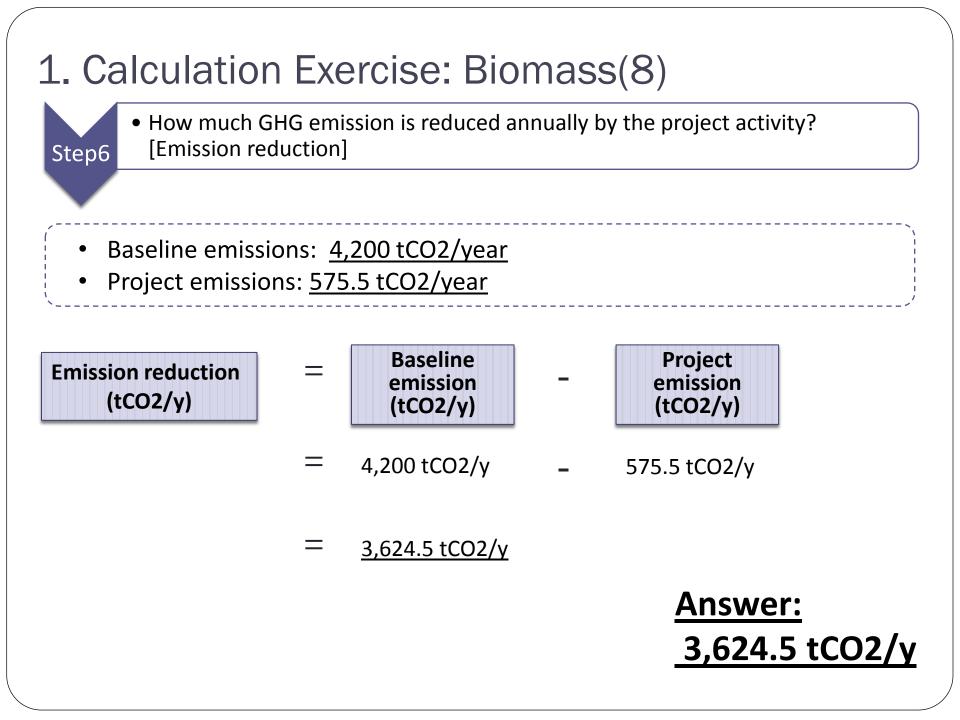
1. Calculation Exercise: Biomass(6)

• How much fuel is required for operating the plant annually?

- Step4 How much fuel is required for biomass transportation annually?
 - Furnace oil required for operation of the new plant: <u>5ton/month</u>
 - Diesel required for transportation of biomass: <u>10ton/month</u>


On-site fossil fuel consumption

5 ton/month × 12 months/year = 60 ton/year


Fossil fuel consumption for biomass transport

10 ton/month × 12 months/year = <u>120 ton/year</u>

Unit Check $ton \sim Month - ton$ Year Year Month

 $190.4 \text{ tCO2/y} + 385.1 \text{ tCO2/y} = \frac{575.5 \text{ tCO2/y}}{575.5 \text{ tCO2/y}}$

2. Calculation Exercise: Mini-hydro power(1)

- Company A has a CDM project plan with the following details:
 - New mini-hydro power plant project selling the power to CEB
 - Capacity: <u>1.1 MW</u>
 - Expected operation: (dry season) <u>0.6MW</u>, (wet season)<u>1.1MW</u>
 - <u>0.1MW</u> of generated electricity is required for operating the mini-hydro plant
 - Daily operating hours: <u>24 hours</u>
 - Monthly operating days: <u>25 days</u>
 - Season: (dry season) <u>4 months</u>, (wet season) <u>8 months</u>
 - Grid emission factor: <u>0.70 kgCO2/kWh</u>

(Question)

How much emission reduction is expected by this project activity?

2. Calculation Exercise: Mini-hydro power(2)

- How many hours does the plant operate in dry season?
- How many hours does the plant operate in wet season?
 - How much electricity to be sold to the grid in dry season?
 - How much electricity to be sold to the grid in wet season?

Step2

Step3

Step4

- How much is the total electricity to be sold to the grid annually?
- How much GHG emission is reduced annually by the project?

2. Calculation Exercise: Mini-hydro power(3)

- How many hours does the plant operate in dry season?
- Step1 How many hours does the plant operate in wet season?
 - Daily operating hours: <u>24 hours</u>
 - Monthly operating days: <u>25 days</u>
 - Season: (dry season) <u>4 months</u>, (wet season) <u>8 months</u>

Dry season:

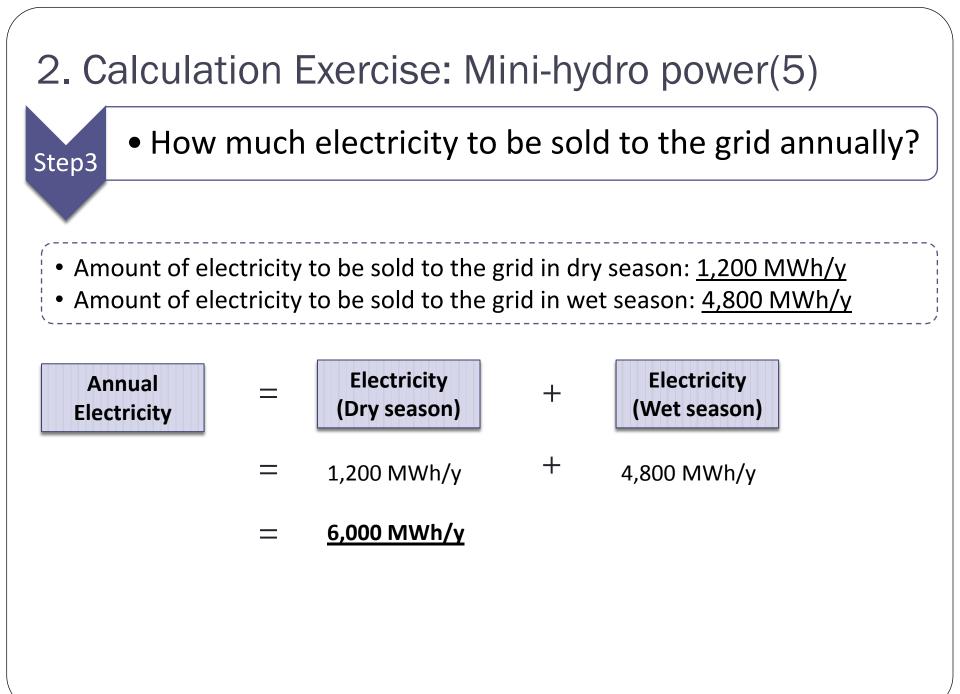
24 hours/day × 25days/month × 4 months/y = 2,400 hours/y

Wet season:

24 hours/day × 25days/month × 8 months/y = 4,800 hours/y

2. Calculation Exercise: Mini-hydro power(4)

- How much electricity to be sold to the grid in dry season?
- How much electricity to be sold to the grid in wet season?
 - Operating hours in each season: (Dry) 2,400 hours, (Wet) 4,800hours
 - Expected operation: (dry season) <u>0.6MW</u>, (wet season) <u>1.1MW</u>
 - Electricity requirement by the plant: <u>0.1MW</u>


Amount of electricity to be sold to the grid can be obtained by operation ratio (MW) times number of operating hours.

Dry season:

2,400 hours/y × (0.6 MW - 0.1MW) = <u>1,200 MWh/y</u>

Wet season:

4,800 hours/y × (1.1 MW −0.1MW) = 4,800 MWh/y

